| Peer-Reviewed

Layered 2D Transition Metal Dichalcogenides (MX2; M=Mo, W; X=S, Se, Te) Nanosheets and Their Composites for Photocatalytic Applications: A Review

Received: 17 June 2021    Accepted: 2 July 2021    Published: 13 July 2021
Views:       Downloads:
Abstract

Current, in-depth research on layered two-dimensional transition metal dichalcogenides (2D-TMDCs) has been triggered by a progression of investigative theoretical predictions and experimental observations of unanticipated electronic, optical and photochemical properties in nanosheets and their composites of this family of materials, especially their most archetypal member, MoS2. MoS2 nanosheets show a fantastic array of properties to be a potential candidate as an active photochemical agent, thus contributing to the gateway of an immense number of problems. However, from the past 2-3 years, the other family members, MoX2 (X=Se, Te) and WX2 (X=S, Se, and Te), are stepping out of the shadows of the famous molybdenum disulfide and establishing their own identity. This review aims to arrange and combine information on photocatalytic hydrogen production, water splitting, dye degradation, visible light photocatalytic activity, photocatalytic CO2 reduction, and environmental remediation of layered 2D-TMDCs nanosheets and their composites. Due to the popularity of MoS2, the central focus of the review is on MoSe2, MoTe2, WS2, WSe2. This work presents a systematic report on the applications of various 2D metal dichalcogenides as a whole, exploring their prime role in enhancing individual performance like the evolution of hydrogen gas, reduction of CO2, and degradation of toxic dyes or pollutants. All such treatments are of utmost significance for having a better environment to live. Thus, this specifies the importance of 2D-TMDCs towards the attainment of a sustainable homeland. In recent years WTe2 has emerged as a potential candidate for giant magnetoresistance and superconductivity. However, in the case of photocatalytic applications, it is not very economical for commercial development. Therefore, WTe2 is excluded from our discussion.

Published in Composite Materials (Volume 5, Issue 1)
DOI 10.11648/j.cm.20210501.12
Page(s) 17-29
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Transition Metal Dichalcogenides Nanosheets, HER, Dye Degradation, CO2 Reduction, Water Splitting, Visible-Light-Driven Photocatalysis

References
[1] Ali, M. N., Xiong, J., Flynn, S., Tao, J., Gibson, Q. D., Schoop, L. M., & Cava, R. J. (2014). Large, non-saturating magnetoresistance in WTe2. Nature, 514 (7521), 205-208. https://doi.org/10.1038/nature13763.
[2] Duan, X., Wang, C., Pan, A., Yu, R., & Duan, X. (2015). Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: opportunities and challenges. Chemical Society Reviews, 44 (24), 8859-8876. https://doi.org/10.1039/C5CS00507H.
[3] Huang, X., Zeng, Z., & Zhang, H. (2013). Metal dichalcogenide nanosheets: preparation, properties and applications. Chemical Society Reviews, 42 (5), 1934-1946. https://doi.org/10.1039/C2CS35387C.
[4] Low, J., Cao, S., Yu, J., & Wageh, S. (2014). Two-dimensional layered composite photocatalysts. Chemical communications, 50 (74), 10768-10777. https://doi.org/10.1039/C4CC02553A.
[5] Wang, F., Shifa, T. A., Zhan, X., Huang, Y., Liu, K., Cheng, Z., & He, J. (2015). Recent advances in transition-metal dichalcogenide based nanomaterials for water splitting. Nanoscale, 7 (47), 19764-19788. https://doi.org/10.1039/C5NR06718A.
[6] Ozdemir, B., & Barone, V. (2020). Thickness dependence of solar cell efficiency in transition metal dichalcogenides MX2 (M: Mo, W; X: S, Se, Te). Solar Energy Materials and Solar Cells, 212, 110557. https://doi.org/10.1016/j.solmat.2020.110557.
[7] Naidu, K. C. B., Kumar, N. S., Boddula, R., Pothu, R., Banerjee, P., Sarma, M. S. S. R. K. N, & Kishore, B. (2020). Recent Advances in Nanomaterials for Li-ion Batteries. Lithium-ion Batteries: Materials and Applications, 80, 148-160. https://doi.org/10.21741/9781644900918-6.
[8] Choi, W., Akhtar, I., Kang, D., Lee, Y. J., Jung, J., Kim, Y. H. & Seo, Y. (2020). Optoelectronics of Multijunction Heterostructures of Transition Metal Dichalcogenides. Nano Letters, 20 (3), 1934-1943. https://doi.org/10.1021/acs.nanolett.9b05212.
[9] Kannan, P. K., Late, D. J., Morgan, H., & Rout, C. S. (2015). Recent developments in 2D layered inorganic nanomaterials for sensing. Nanoscale, 7 (32), 13293-13312. https://doi.org/10.1039/C5NR03633J.
[10] Huang, Y., Guo, J., Kang, Y., Ai, Y., & Li, C. M. (2015). Two dimensional atomically thin MoS2 nanosheets and their sensing applications. Nanoscale, 7 (46), 19358-19376. https://doi.org/10.1039/C5NR06144J.
[11] Brent, J. R., Savjani, N., & O'Brien, P. (2017). Synthetic approaches to two-dimensional transition metal dichalcogenide nanosheets. Progress in Materials Science, 89, 411-478. https://doi.org/10.1016/j.pmatsci.2017.06.002.
[12] Eftekhari, A. (2017). Tungsten dichalcogenides (WS2, WSe2, and WTe2): materials chemistry and applications. Journal of Materials Chemistry A, 5 (35), 18299-18325. https://doi.org/10.1039/C7TA04268J.
[13] Krishnan, U., Kaur, M., Singh, K., Kumar, M., & Kumar, A. (2019). A synoptic review of MoS2: Synthesis to applications. Superlattices and Microstructures, 128, 274-297. https://doi.org/10.1016/j.spmi.2019.02.005.
[14] Kaur, M., Umar, A., Mehta, S. K., Singh, S., & Kansal, S. K. (2017). Visible-light photocatalytic degradation of organic pollutants using molybdenum disulfide (MoS2) microtubes. Nanoscience and Nanotechnology Letters, 9 (12), 1966-1974. https://doi.org/10.1166/nnl.2017.2591.
[15] Ren, B., Shen, W., Li, L., Wu, S., & Wang, W. (2018). 3D CoFe2O4 nanorod/flower-like MoS2 nanosheet heterojunctions as recyclable visible light-driven photocatalysts for the degradation of organic dyes. Applied Surface Science, 447, 711-723. https://doi.org/10.1016/j.apsusc.2018.04.064.
[16] Liang, Z., Shen, R., Ng, Y. H., Zhang, P., Xiang, Q., & Li, X. (2020). A review on 2D MoS2 co-catalysts in photocatalytic H2 production. Journal of Materials Science & Technology. https://doi.org/10.1039/D0TA08045D.
[17] Zhang, Y., Liu, Y., Gao, W., Chen, P., Cui, H., Fan, Y., & Tang, B. (2019). MoS2 nanosheets assembled on three-way nitrogen-doped carbon tubes for photocatalytic water splitting. Frontiers in Chemistry, 7, 325. https://doi.org/10.3389/fchem.2019.00325.
[18] Liu, P., Zhu, J., Zhang, J., Tao, K., Gao, D., & Xi, P. (2018). Active basal plane catalytic activity and conductivity in Zn doped MoS2 nanosheets for efficient hydrogen evolution. Electrochimica Acta, 260, 24-30. https://doi.org/10.1016/j.electacta.2017.11.080.
[19] Kou, S., Guo, X., Xu, X., & Yang, J. (2018). TiO2 on MoSe2 nanosheets as an advanced photocatalyst for hydrogen evolution in visible light. Catalysis Communications, 106, 60-63. https://doi.org/10.1016/j.catcom.2017.12.013.
[20] Lei, W., Xiao, J. L., Liu, H. P., Jia, Q. L., & Zhang, H. J. (2020). Tungsten disulfide: synthesis and applications in electrochemical energy storage and conversion. Tungsten, 1-23. https://doi.org/10.1007/s42864-020-00054-6.
[21] Zhu, L., Nguyen, D. C. T., Woo, J. H., Zhang, Q., Cho, K. Y., & Oh, W. C. (2018). An eco-friendly synthesized mesoporous-silica particle combined with WSe2-graphene-TiO2 by self-assembled method for photocatalytic dye decomposition and hydrogen production. Scientific reports, 8 (1), 1-14. https://doi.org/10.1038/s41598-018-31188-w.
[22] Wan, J., An, B., Chen, Z., Zhang, J., & William, W. Y. (2018). Nitrogen doped graphene oxide modified WSe2 nanorods for visible light photocatalysis. Journal of Alloys and Compounds, 750, 499-506. https://doi.org/10.1016/j.jallcom.2018.04.047.
[23] Yu, B., Zheng, B., Wang, X., Qi, F., He, J., Zhang, W., & Chen, Y. (2017). Enhanced photocatalytic properties of graphene modified few-layered WSe2 nanosheets. Applied Surface Science, 400, 420-425. https://doi.org/10.1016/j.apsusc.2016.12.015.
[24] An, B., Liu, Y., Xu, C., Wang, H., & Wan, J. (2018). Novel magnetically separable Fe3O4–WSe2/NG photocatalysts: synthesis and photocatalytic performance under visible-light irradiation. New Journal of Chemistry, 42 (11), 8914-8923. https://doi.org/10.1039/C8NJ00406D.
[25] Ali, A., & Oh, W. C. (2017). Preparation of nanowire like WSe2-graphene nanocomposite for photocatalytic reduction of CO2 into CH3OH with the presence of sacrificial agents. Scientific Reports, 7 (1), 1-11. https://doi.org/10.1038/s41598-017-02075-7.
[26] Zhong, Y., Shao, Y., Ma, F., Wu, Y., Huang, B., & Hao, X. (2017). Band-gap-matched CdSe QD/WS2 nanosheet composite: Size-controlled photocatalyst for high-efficiency water splitting. Nano Energy, 31, 84-89. https://doi.org/10.1016/j.nanoen.2016.11.011.
[27] Wang X, Cao Z, Zhang Y, Xu H, Cao S, Zhang R. All-solid-state Z-scheme Pt/ZnS-ZnO heterostructure sheets for photocatalytic simultaneous evolution of H2 and O2. Chem Eng J 2020; 385: 123782. https://doi.org/10.1016/j.cej.2019.123782.
[28] Li, S., Lei, F. C., Peng, X., Wang, R. Q., Xie, J. F., Wu, Y. P., & Li, D. S. (2020). Synthesis of Semiconducting 2H-Phase WTe2 Nanosheets with Large Positive Magnetoresistance. Inorganic Chemistry, 59 (17), 11935-11939. https://doi.org/10.1021/acs.inorgchem.0c02049.
[29] Ping, J., Fan, Z., Sindoro, M., Ying, Y., & Zhang, H. (2017). Recent advances in sensing applications of two-dimensional transition metal dichalcogenide nanosheets and their composites. Advanced Functional Materials, 27 (19), 1605817.Eftekhari, A. (2017). Tungsten dichalcogenides (WS2, WSe2, and WTe2): materials chemistry and applications. Journal of Materials Chemistry A, 5 (35), 18299-18325. https://doi.org/10.1002/adfm.201605817.
[30] Wu, M., Xiao, Y., Zeng, Y., Zhou, Y., Zeng, X., Zhang, L., & Liao, W. (2020). Synthesis of two-dimensional transition metal dichalcogenides for electronics and optoelectronics. InfoMat. https://doi.org/10.1002/inf2.12161.
[31] Chhowalla, M., Shin, H. S., Eda, G., Li, L. J., Loh, K. P., & Zhang, H. (2013). The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature chemistry, 5 (4), 263-275. https://doi.org/10.1038/nchem.1589.
[32] Samadi, M., Sarikhani, N., Zirak, M., Zhang, H., Zhang, H. L., & Moshfegh, A. Z. (2018). Group 6 transition metal dichalcogenide nanomaterials: synthesis, applications and future perspectives. Nanoscale Horizons, 3 (2), 90-204. https://doi.org/10.1039/C7NH00137A.
[33] Wang, K., Li, Y., Li, J., & Zhang, G. (2020). Boosting interfacial charge separation of Ba5Nb4O15/g-C3N4 photocatalysts by 2D/2D nanojunction towards efficient visible-light driven H2 generation. Applied Catalysis B: Environmental, 263, 117730. https://doi.org/10.1016/j.apcatb.2019.05.032.
[34] Shi, X., Kim, S., Fujitsuka, M., & Majima, T. (2019). In situ observation of NiS nanoparticles depositing on single TiO2 mesocrystal for enhanced photocatalytic hydrogen evolution activity. Applied Catalysis B: Environmental, 254, 594-600. https://doi.org/10.1016/j.apcatb.2019.05.031.
[35] Hisatomi, T., Kubota, J., & Domen, K. (2014). Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chemical Society Reviews, 43 (22), 7520-7535. https://doi.org/10.1039/C3CS60378D.
[36] Moniz, S. J., Shevlin, S. A., Martin, D. J., Guo, Z. X., & Tang, J. (2015). Visible-light driven heterojunction photocatalysts for water splitting–a critical review. Energy & Environmental Science, 8 (3), 731-759. https://doi.org/10.1039/C4EE03271C.
[37] Li, M., Cui, Z., & Li, E. (2019). Silver-modified MoS2 nanosheets as a high-efficiency visible-light photocatalyst for water splitting. Ceramics International, 45 (11), 14449-14456. https://doi.org/10.1016/j.ceramint.2019.04.166.
[38] C. Dai, E. Qing, Y. Li, Z. Zhou & C. Yang, Novel MoSe2 hierarchical microspheres for applications in visible-light-driven advanced oxidation processes, Nanoscale 7 (2015) 19970–19976. https://doi.org/10.1039/C5NR06527E.
[39] Y. Sang, Z. Zhao, M. Zhao, P. Hao, Y. Leng, H. Liu, From UV to near-Infrared, WS2 nanosheet: a novel photocatalyst for full solar light spectrum photodegradation, Adv. Mater. 27 (2015) 363–369. https://doi.org/10.1002/adma.201403264.
[40] Luo, B., Liu, G., & Wang, L. (2016). Recent advances in 2D materials for photocatalysis. Nanoscale, 8 (13), 6904-6920. https://doi.org/10.1039/C6NR00546B.
[41] Z. Liu, H. Zhao, N. Li, Y. Zhang, X. Zhang, Y. Du, assembled 3D electrocatalysts for efficient hydrogen evolution: WSe2 layers anchored on graphene sheets, Inorg. Chem. 3 (2016) 313–319. https://doi.org/10.1039/C5QI00216H.
[42] He, H. Y., He, Z., & Shen, Q. (2018). Efficient hydrogen evolution catalytic activity of graphene/metallic MoS2 nanosheet heterostructures synthesized by a one-step hydrothermal process. International Journal of Hydrogen Energy, 43 (48), 21835-21843. https://doi.org/10.1016/j.ijhydene.2018.10.023.
[43] Ma, F., Wu, Y., Shao, Y., Zhong, Y., Lv, J., & Hao, X. (2016). 0D/2D nanocomposite visible light photocatalyst for highly stable and efficient hydrogen generation via recrystallization of CdS on MoS2 nanosheets. Nano Energy, 27, 466-474. https://doi.org/10.1002/adma.201605646.
[44] Chava, R. K., Do, J. Y., & Kang, M. (2018). Smart hybridization of Au coupled CdS nanorods with few layered MoS2 nanosheets for high performance photocatalytic hydrogen evolution reaction. ACS Sustainable Chemistry & Engineering, 6 (5), 6445-6457. https://doi.org/10.1021/acssuschemeng.8b00249.
[45] Reddy, D. A., Kim, E. H., Gopannagari, M., Kim, Y., Kumar, D. P., & Kim, T. K. (2019). Few layered black phosphorus/MoS2 nanohybrid: a promising co-catalyst for solar driven hydrogen evolution. Applied Catalysis B: Environmental, 241, 491-498. https://doi.org/10.1016/j.apcatb.2018.09.055.
[46] Reddy, D. A., Park, H., Ma, R., Kumar, D. P., Lim, M., & Kim, T. K. (2017). Heterostructured WS2-MoS2 Ultrathin Nanosheets Integrated on CdS Nanorods to Promote Charge Separation and Migration and Improve Solar-Driven Photocatalytic Hydrogen Evolution. ChemSusChem, 10 (7), 1563-1570. https://doi.org/10.1002/cssc.201601799.
[47] Yuan, Y. J., Shen, Z., Wu, S., Su, Y., Pei, L., Ji, Z. & Zou, Z. (2019). Liquid exfoliation of g-C3N4 nanosheets to construct 2D-2D MoS2/g-C3N4 photocatalyst for enhanced photocatalytic H2 production activity. Applied Catalysis B: Environmental, 246, 120-128. https://doi.org/10.1016/j.cej.2020.127804.
[48] Li, Y., Zhang, P., Wan, D., Xue, C., Zhao, J., & Shao, G. (2020). Direct evidence of 2D/1D heterojunction enhancement on photocatalytic activity through assembling MoS2 nanosheets onto super-long TiO2 nanofibers. Applied Surface Science, 504, 144361. https://doi.org/10.1016/j.apsusc.2019.144361.
[49] Zhang, J., Tian, P., Tang, T., Huang, G., Chen, X., Zeng, J. & Ji, Z. (2020). Ultrathin MoSe2 three-dimensional nanospheres as high carriers transmission channel and full spectrum harvester toward excellent photocatalytic and photoelectrochemical performance. International Journal of Hydrogen Energy, 45 (11), 6519-6528. https://doi.org/10.1016/j.ijhydene.2019.12.217.
[50] Wang, Y., Zhao, J., Chen, Z., Zhang, F., Guo, W., Lin, H., & Qu, F. (2019). Construction of Z-scheme MoSe2/CdSe hollow nanostructure with enhanced full spectrum photocatalytic activity. Applied Catalysis B: Environmental, 244, 76-86. https://doi.org/10.1016/j.apcatb.2018.11.033.
[51] Mak, K. F., & Shan, J. (2016). Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nature Photonics, 10 (4), 216-226. https://doi.org/10.1038/nphoton.2015.282.
[52] Wu, L., Shi, S., Li, Q., Zhang, X., & Cui, X. (2019). TiO2 nanoparticles modified with 2D MoSe2 for enhanced photocatalytic activity on hydrogen evolution. International Journal of Hydrogen Energy, 44 (2), 720-728. https://doi.org/10.1016/j.ijhydene.2018.10.214.
[53] Fan, C., Wei, Z., Yang, S., & Li, J. (2014). Synthesis of MoSe2 flower-like nanostructures and their photo-responsive properties. RSC Advances, 4 (2), 775-778. https://doi.org/10.1039/C3RA42564A.
[54] Choi, W., Choudhary, N., Han, G. H., Park, J., Akinwande, D., & Lee, Y. H. (2017). Recent development of two-dimensional transition metal dichalcogenides and their applications. Materials Today, 20 (3), 116-130. https://doi.org/10.1016/j.mattod.2016.10.002.
[55] Zeng, D., Xiao, L., Ong, W. J., Wu, P., Zheng, H., Chen, Y., & Peng, D. L. (2017). Hierarchical ZnIn2S4/MoSe2 Nanoarchitectures for Efficient Noble-Metal-Free Photocatalytic Hydrogen Evolution under Visible Light. ChemSusChem, 10 (22), 4624-4631. https://doi.org/10.1002/cssc.201701345.
[56] Masih, D., Ma, Y., & Rohani, S. (2017). Graphitic C3N4 based noble-metal-free photocatalyst systems: a review. Applied Catalysis B: Environmental, 206, 556-588. https://doi.org/10.1016/j.apcatb.2017.01.061.
[57] Liu, Y., Li, Y., Lin, Y., Yang, S., Zhang, Q., & Peng, F. (2020). Theoretical calculations and controllable synthesis of MoSe2/CdS-CdSe with highly active sites for photocatalytic hydrogen evolution. Chemical Engineering Journal, 383, 123133. https://doi.org/10.1016/j.cej.2019.123133.
[58] Mao, J., Zhou, L., Li, Y., Tao, Y., Chai, K., Shi, Y., & Xu, W. (2021). Synthesis of MoTe2 nanowire as an efficient hydrogen evolution reaction material. Materials Letters, 129471. https://doi.org/10.1016/j.matlet.2021.129471.
[59] Kang, J., Tongay, S., Zhou, J., Li, J., & Wu, J. (2013). Band offsets and heterostructures of two-dimensional semiconductors. Applied Physics Letters, 102 (1), 012111. https://doi.org/10.1063/1.4774090.
[60] He, H. Y., He, Z., & Shen, Q. (2020). One-pot synthesis of non-precious metal RGO/1T’-MoTe2: Cu heterohybrids for excellent catalytic hydrogen evolution. Materials Science and Engineering: B, 260, 114659. https://doi.org/10.1016/j.mseb.2020.114659.
[61] Xu, D., Xu, P., Zhu, Y., Peng, W., Li, Y., Zhang, G., & Fan, X. (2018). High yield exfoliation of WS2 crystals into 1–2 layer semiconducting nanosheets and efficient photocatalytic hydrogen evolution from WS2/CdS nanorod composites. ACS applied materials & interfaces, 10 (3), 2810-2818. https://doi.org/10.1021/acsami.7b15614.
[62] Zhang, K., Fujitsuka, M., Du, Y., & Majima, T. (2018). 2D/2D heterostructured CdS/WS2 with efficient charge separation improving H2 evolution under visible light irradiation. ACS applied materials & interfaces, 10 (24), 20458-20466. https://doi.org/10.1021/acsami.8b04080.
[63] Akple, M. S., Low, J., Wageh, S., Al-Ghamdi, A. A., Yu, J., & Zhang, J. (2015). Enhanced visible light photocatalytic H2-production of g-C3N4/WS2 composite heterostructures. Applied Surface Science, 358, 196-203. https://doi.org/10.1016/j.apsusc.2015.08.250.
[64] Wang, X., Chen, Y., Zheng, B., Qi, F., He, J., Li, Q, & Zhang, W. (2017). Graphene-like WSe2 nanosheets for efficient and stable hydrogen evolution. Journal of Alloys and Compounds, 691, 698-704. https://doi.org/10.1016/j.jallcom.2016.08.305.
[65] He, H. Y. (2020). Metallic WSe2: Sn nanosheets assembled on graphene by a modified hydrothermal process for hydrogen evolution reaction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 589, 124149. https://doi.org/10.1016/j.colsurfa.2019.124149.
[66] Xu, M., Wei, Z., Liu, J., Guo, W., Zhu, Y., Chi, J.,... & Shangguan, W. (2019). One-pot synthesized visible-light-responsive MoS2@ CdS nanosheets-on-nanospheres for hydrogen evolution from the antibiotic wastewater: Waste to energy insight. International Journal of Hydrogen Energy, 44 (39), 21577-21587. https://doi.org/10.1016/j.ijhydene.2019.06.082.
[67] Min, S., & Lu, G. (2012). Sites for high efficient photocatalytic hydrogen evolution on a limited-layered MoS2 cocatalyst confined on graphene sheets―the role of graphene. The Journal of Physical Chemistry C, 116 (48), 25415-25424. https://doi.org/10.1021/jp3093786.
[68] Maitra, U., Gupta, U., De, M., Datta, R., Govindaraj, A., & Rao, C. N. R. (2013). Highly effective visible-light-induced H2 generation by single-layer 1T-MoS2 and a nanocomposite of few-layer 2H-MoS2 with heavily nitrogenated graphene. Angewandte Chemie International Edition, 52 (49), 13057-13061. https://doi.org/10.1002/anie.201306918.
[69] Gupta, U., & Rao, C. N. R. (2017). Hydrogen generation by water splitting using MoS2 and other transition metal dichalcogenides. Nano Energy, 41, 49-65. http://dx.doi.org/10.1016/j.nanoen.2017.08.021.
[70] Liu, M., Li, F., Sun, Z., Ma, L., Xu, L., & Wang, Y. (2014). Noble-metal-free photocatalysts MoS2–graphene/CdS mixed nanoparticles/nanorods morphology with high visible light efficiency for H2 evolution. Chemical Communications, 50 (75), 11004-11007. https://doi.org/10.1039/C4CC04653F.
[71] Zong, X., Han, J., Ma, G., Yan, H., Wu, G., & Li, C. (2011). Photocatalytic H2 evolution on CdS loaded with WS2 as cocatalyst under visible light irradiation. The Journal of Physical Chemistry C, 115 (24), 12202-12208. https://doi.org/10.1021/jp2006777.
[72] Mahler, B., Hoepfner, V., Liao, K., & Ozin, G. A. (2014). Colloidal synthesis of 1T-WS2 and 2H-WS2 nanosheets: applications for photocatalytic hydrogen evolution. Journal of the American Chemical Society, 136 (40), 14121-14127. https://doi.org/10.1021/ja506261t.
[73] Xiang, Q., Yu, J., & Jaroniec, M. (2012). Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles. Journal of the American Chemical Society, 134 (15), 6575-6578. https://doi.org/10.1021/ja302846n.
[74] Meng, F., Li, J., Cushing, S. K., Zhi, M., & Wu, N. (2013). Solar hydrogen generation by nanoscale p–n junction of p-type molybdenum disulfide/n-type nitrogen-doped reduced graphene oxide. Journal of the American Chemical Society, 135 (28), 10286-10289. https://doi.org/10.1021/ja404851s.
[75] Zeng, D., Wu, P., Ong, W. J., Tang, B., Wu, M., Zheng, H.,... & Peng, D. L. (2018). Construction of network-like and flower-like 2H-MoSe2 nanostructures coupled with porous g-C3N4 for noble-metal-free photocatalytic H2 evolution under visible light. Applied Catalysis B: Environmental, 233, 26-34. https://doi.org/10.1016/j.apcatb.2018.03.102.
[76] Wu, L., Li, Q., Yang, C., Chen, Y., Dai, Z., Yao, B.,... & Cui, X. (2020). Ternary TiO2/MoSe2/γ-graphyne heterojunctions with enhanced photocatalytic hydrogen evolution. Journal of Materials Science: Materials in Electronics, 31 (11), 8796-8804. https://doi.org/10.1007/s10854-020-03414-7.
[77] Cheah, A. J., Chiu, W. S., Khiew, P. S., Nakajima, H., Saisopa, T., Songsiriritthigul, P., & Hamid, M. A. A. (2015). Facile synthesis of a Ag/MoS2 nanocomposite photocatalyst for enhanced visible-light driven hydrogen gas evolution. Catalysis Science & Technology, 5 (8), 4133-4143. https://doi.org/10.1039/C5CY00464K.
[78] Choi, J., Reddy, D. A., Han, N. S., Jeong, S., Hong, S., Kumar, D. P.,.. & Kim, T. K. (2017). Modulation of charge carrier pathways in CdS nanospheres by integrating MoS2 and Ni2P for improved migration and separation toward enhanced photocatalytic hydrogen evolution. Catalysis Science & Technology, 7 (3), 641-649. https://doi.org/10.1039/C6CY02145J.
[79] Wang, M., Ju, P., Zhao, Y., Li, J., Han, X., & Hao, Z. (2018). In situ ion exchange synthesis of MoS2/gC3N4 heterojunctions for highly efficient hydrogen production. New Journal of Chemistry, 42 (2), 910-917. https://doi.org/10.1039/C7NJ03483K.
[80] Wan, J., Wang, R., Liu, L., Fan, J., Liu, E., Gao, X., & Fu, F. (2019). A novel approach for high-yield solid few-layer MoS2 nanosheets with effective photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 44 (31), 16639-16647. https://doi.org/10.1016/j.ijhydene.2019.04.150.
[81] Sharma, R., Khanuja, M., Islam, S. S., Singhal, U., & Varma, A. (2017). Aspect-ratio-dependent photoinduced antimicrobial and photocatalytic organic pollutant degradation efficiency of ZnO nanorods. Research on Chemical Intermediates, 43 (10), 5345-5364. https://doi.org/10.1007/s11164-017-2930-7.
[82] Pu, Y. C., Chen, Y. C., & Hsu, Y. J. (2010). Au-decorated NaxH2− xTi3O7 nanobelts exhibiting remarkable photocatalytic properties under visible-light illumination. Applied Catalysis B: Environmental, 97 (3-4), 389-397. https://doi.org/10.1016/j.apcatb.2010.04.023.
[83] Kumar, A., Singh, S., & Khanuja, M. (2020). A comparative photocatalytic study of pure and acid-etched template free graphitic C3N4 on different dyes: An investigation on the influence of surface modifications. Materials Chemistry and Physics, 243, 122402. https://doi.org/10.1016/j.matchemphys.2019.122402.
[84] Ansari, M. Z., Ansari, S. A., Parveen, N., Cho, M. H., & Song, T. (2018). Lithium-ion storage ability, supercapacitor electrode performance, and photocatalytic performance of tungsten disulfide nanosheets. New Journal of Chemistry, 42 (8), 5859-5867. https://doi.org/10.1039/C8NJ00018B.
[85] Ntakadzeni, M., Anku, W. W., Kumar, N., Govender, P. P., & Reddy, L. (2019). PEGylated MoS2 nanosheets: A dual functional photocatalyst for photodegradation of organic dyes and photoreduction of chromium from aqueous solution. Bulletin of Chemical Reaction Engineering & Catalysis, 14 (1), 142-152. https://doi.org/10.9767/bcrec.14.1.2258.142-152.
[86] Mittal, H., & Khanuja, M. Hydrothermal in-situ synthesis of MoSe2-polypyrrole nanocomposite for efficient photocatalytic degradation of dyes under dark and visible light irradiation. Separation and Purification Technology, 254, 117508. https://doi.org/10.1016/j.seppur.2020.117508.
[87] Li, P. H., Chen, L,. Zhang, Y., Ji, X. R., Chen, S., Song, H. J., Li, C. S. & H. Tang, Synthesis of MoSe2/reduced graphene oxide composites with improved tribological properties for oil-based additives, Cryst. Res. Technol. 49 (2014) 204–211. https://doi.org/10.1002/crat.201300317.
[88] Wu, Y., Xu, M., Chen, X. S., Yang, H. Wu, Pan, J. & Xiong, X. CTAB-assisted synthesis of novel ultrathin MoSe2 nanosheets perpendicular to graphene for the adsorption and photodegradation of organic dyes under visible light, Nanoscale 8 (2016) 440–450. https://doi.org/10.1039/C5NR05748E.
[89] B. Yu, B. Zheng, X. Wang, F. Qi, J. He, W. Zhang & Y. Chen, Enhanced photocatalytic properties of graphene modified few-layered WSe2 nanosheets, Appl. Surf. Sci. 400 (2017) 420–425. https://doi.org/10.1016/j.apsusc.2016.12.015.
[90] Rani, A., Patel, A. S., Chakraborti, A., Singh, K., & Sharma, P. (2021). Enhanced photocatalytic activity of plasmonic Au nanoparticles incorporated MoS2 nanosheets for degradation of organic dyes. Journal of Materials Science: Materials in Electronics, 1-17. https://arxiv.org/abs/2006.16211.
[91] Li, Y., Xiang, F., Lou, W., & Zhang, X. (2019, July). MoS2 with structure tuned photocatalytic ability for degradation of methylene blue. In IOP Conference Series: Earth and Environmental Science (Vol. 300, No. 5, p. 052021). IOP Publishing. https://doi.org/10.1088/1755-1315/300/5/052021.
[92] Huang, J., Jin, B., Liu, H., Li, X., Zhang, Q., Chu, S.,... & Chu, S. (2018). Controllable synthesis of flower-like MoSe2 3D microspheres for highly efficient visible-light photocatalytic degradation of nitro-aromatic explosives. Journal of Materials Chemistry A, 6 (24), 11424-11434. https://doi.org/10.1039/C8TA02287A.
[93] Lei, X., Yu, K., Tang, Z., & Zhu, Z. (2017). Synthesized MoSe2/TiO2 heterogeneous structure as the promising photocatalytic material: Studies from theory to experiment. Journal of Applied Physics, 121 (4), 044303. https://doi.org/10.1063/1.4974911.
[94] Mittal, H., Kumar, A., & Khanuja, M. (2019). In-situ oxidative polymerization of aniline on hydrothermally synthesized MoSe2 for enhanced photocatalytic degradation of organic dyes. Journal of Saudi Chemical Society, 23 (7), 836-845. https://doi.org/10.1016/j.jscs.2019.02.004.
[95] Tsai, C., Chan, K., Abild-Pedersen, F., & Nørskov, J. K. (2014). Active edge sites in MoSe2 and WSe2 catalysts for the hydrogen evolution reaction: a density functional study. Physical Chemistry Chemical Physics, 16 (26), 13156-13164. https://doi.org/10.1039/C4CP01237B.
[96] Dhirendra, S., Kumar, B., Jaivardhan, S., Subhasis, G., Sinha, R. S., & Bhaskar, K. (2020). Cost effective liquid phase exfoliation of MoS2 nanosheets and photocatalytic activity for wastewater treatment enforced by visible light. Scientific Reports (Nature Publisher Group), 10 (1). https://doi.org/10.1038/s41598-020-67683-2.
[97] Zhang, Q., Tai, M., Zhou, Y., Zhou, Y., Wei, Y., Tan, C. & Lin, H. (2019). Enhanced photocatalytic property of γ-CsPbI3 perovskite nanocrystals with WS2. ACS Sustainable Chemistry & Engineering, 8 (2), 1219-1229. https://doi.org/10.1021/acssuschemeng.9b06451.
[98] Zhang, X., Qiu, F., Rong, X., Xu, J., Rong, J., & Zhang, T. (2018). Zinc oxide/graphene-like tungsten disulphide nanosheet photocatalysts: Synthesis and enhanced photocatalytic activity under visible-light irradiation. The Canadian Journal of Chemical Engineering, 96 (5), 1053-1061. https://doi.org/10.1002/cjce.23039.
[99] Wang, X., Chen, Y., Zheng, B., Qi, F., He, J., Yu, B., & Zhang, W. (2017). Significant enhancement of photocatalytic activity of multi-walled carbon nanotubes modified WSe2 composite. Materials Letters, 197, 67-70. https://doi.org/10.1016/j.matlet.2017.03.150.
[100] Li, S., Zhao, Z., Yu, D., Zhao, J. Z., Su, Y., Liu, Y.,... & Zhang, Z. (2019). Few-layer transition metal dichalcogenides (MoS2, WS2, and WSe2) for water splitting and degradation of organic pollutants: Understanding the piezocatalytic effect. Nano Energy, 66, 104083. https://doi.org/10.1016/j.nanoen.2019.104083.
[101] Kaur, A., Umar, A., Anderson, W. A., & Kansal, S. K. (2018). Facile synthesis of CdS/TiO2 nanocomposite and their catalytic activity for ofloxacin degradation under visible illumination. Journal of Photochemistry and Photobiology A: Chemistry, 360, 34-43. https://doi.org/10.1016/j.jphotochem.2018.04.021.
[102] Patel, M., Patel, M. H., & Sumesh, C. K. (2020, May). Visible light enhanced photocatalytic performance of WS2 catalyst for the degradation of ternary dye mixture. In AIP Conference Proceedings (Vol. 2220, No. 1, p. 020047). AIP Publishing LLC. https://doi.org/10.1063/5.0001154.
[103] Zhang, J., Huang, L., Lu, Z., Jin, Z., Wang, X., Xu, G.,... & Ji, Z. (2016). Crystal face regulating MoS2/TiO2 (001) heterostructure for high photocatalytic activity. Journal of Alloys and Compounds, 688, 840-848. https://doi.org/10.1016/j.jphotochemrev.2017.12.002.
[104] Kumar, S., Sharma, V., Bhattacharyya, K., & Krishnan, V. (2016). Synergetic effect of MoS2–RGO doping to enhance the photocatalytic performance of ZnO nanoparticles. New Journal of Chemistry, 40 (6), 5185-5197. https://doi.org/10.1039/C5NJ03595C.
[105] Tian, Q., Wu, W., Yang, S., Liu, J., Yao, W., Ren, F., & Jiang, C. (2017). Zinc oxide coating effect for the dye removal and photocatalytic mechanisms of flower-like MoS2 nanoparticles. Nanoscale research letters, 12 (1), 1-10. https://doi.org/10.1186/s11671-017-2005-0.
[106] Liu, Y., Xie, S., Li, H., & Wang, X. (2014). A highly efficient sunlight driven ZnO nanosheet photocatalyst: synergetic effect of P-doping and MoS2 atomic layer loading. ChemCatChem, 6 (9), 2522-2526. https://doi.org/10.1002/cctc.201402191.
[107] Kaur, M., Umar, A., Mehta, S. K., Singh, S., Kansal, S. K., Fouad, H., & Alothman, O. Y. (2018). Rapid solar-light driven superior photocatalytic degradation of methylene blue using MoS2-ZnO heterostructure nanorods photocatalyst. Materials, 11 (11), 2254. https://doi.org/10.3390/ma11112254.
[108] Jo, W. K., Lee, J. Y., & Selvam, N. C. S. (2016). Synthesis of MoS2 nanosheets loaded ZnO–g-C3N4 nanocomposites for enhanced photocatalytic applications. Chemical Engineering Journal, 289, 306-318. https://doi.org/10.1016/j.cej.2015.12.080.
[109] Li, H., Wang, Y., Chen, G., Sang, Y., Jiang, H., He, J.,... & Liu, H. (2016). Few-layered MoS2 nanosheets wrapped ultrafine TiO2 nanobelts with enhanced photocatalytic property. Nanoscale, 8 (11), 6101-6109. https://doi.org/10.1039/C5NR08796A.
[110] Wang, D., Xu, Y., Sun, F., Zhang, Q., Wang, P., & Wang, X. (2016). Enhanced photocatalytic activity of TiO2 under sunlight by MoS2 nanodots modification. Applied Surface Science, 377, 221-227. https://doi.org/10.1016/j.apsusc.2016.03.146.
[111] Wang, P., Shi, P., Hong, Y., Zhou, X., & Yao, W. (2015). Facile deposition of Ag3PO4 on graphene-like MoS2 nanosheets for highly efficient photocatalysis. Materials Research Bulletin, 62, 24-29. https://doi.org/10.1016/j.materresbull.2014.10.016.
[112] Chen, X., Zhang, J., Jiang, X., Wang, H., Kong, Z., Xi, J., & Ji, Z. (2018). Curved surface TiO2 nanodrums coupled with MoS2 as heterojunction photocatalysts with enhancing photocatalytic activity. Materials Letters, 229, 277-280. https://doi.org/10.1016/j.matlet.2018.07.051.
[113] Zeng, L., Li, X., Fan, S., Yin, Z., Zhang, M., Mu, J.,... & Liu, S. (2019). Enhancing interfacial charge transfer on novel 3D/1D multidimensional MoS2/TiO2 heterojunction toward efficient photoelectrocatalytic removal of levofloxacin. Electrochimica Acta, 295, 810-821. https://doi.org/10.1016/j.electacta.2018.10.153.
[114] Teng, W., Wang, Y., Huang, H., Li, X., & Tang, Y. (2017). Enhanced photoelectrochemical performance of MoS2 nanobelts-loaded TiO2 nanotube arrays by photo-assisted electrodeposition. Applied Surface Science, 425, 507-517. https://doi.org/10.1016/j.apsusc.2017.06.297.
[115] Shao, N., Wang, J., Wang, D., & Corvini, P. (2017). Preparation of three-dimensional Ag3PO4/TiO2@ MoS2 for enhanced visible-light photocatalytic activity and anti-photocorrosion. Applied Catalysis B: Environmental, 203, 964-978. https://doi.org/10.1016/j.apcatb.2016.11.008
[116] Tang, X., Wang, Z., Huang, W., Jing, Q., & Liu, N. (2018). Construction of N-doped TiO2/MoS2 heterojunction with synergistic effect for enhanced visible photodegradation activity. Materials Research Bulletin, 105, 126-132. https://doi.org/10.1016/j.materresbull.2018.04.046.
[117] Liu, X., Xing, Z., Zhang, Y., Li, Z., Wu, X., Tan, S.,... & Zhou, W. (2017). Fabrication of 3D flower-like black N-TiO2-x@ MoS2 for unprecedented-high visible-light-driven photocatalytic performance. Applied Catalysis B: Environmental, 201, 119-127. https://doi.org/10.1016/j.apcatb.2016.08.031.
[118] Zheng, L., Han, S., Liu, H., Yu, P., & Fang, X. (2016). Hierarchical MoS2 nanosheet@TiO2 nanotube array composites with enhanced photocatalytic and photocurrent performances. Small, 12 (11), 1527-1536. https://doi.org/10.1002/smll.201503441.
[119] Nimbalkar, D. B., Lo, H. H., Ramacharyulu, P. V. R. K., & Ke, S. C. (2016). Improved photocatalytic activity of RGO/MoS2 nanosheets decorated on TiO2 nanoparticles. RSC advances, 6 (38), 31661-31667. https://doi.org/10.1039/C6RA01591C.
[120] Li, X., Wen, J., Low, J., Fang, Y., & Yu, J. (2014). Design and fabrication of semiconductor photocatalyst for photocatalytic reduction of CO2 to solar fuel. Science China Materials, 57 (1), 70-100. https://doi.org/10.1007/s40843-014-0003-1.
[121] Kumar, B., Asadi, M., Pisasale, D., Sinha-Ray, S., Rosen, B. A., Haasch, R. & Salehi-Khojin, A. (2013). Renewable and metal-free carbon nanofibre catalysts for carbon dioxide reduction. Nature communications, 4 (1), 1-8. https://doi.org/10.1038/ncomms3819.
[122] Chen, D., Zhang, H., Liu, Y., & Li, J. (2013). Graphene and its derivatives for the development of solar cells, photoelectrochemical, and photocatalytic applications. Energy & Environmental Science, 6 (5), 1362-1387. https://doi.org/10.1039/C3EE23586F.
[123] Deng, D., Novoselov, K. S., Fu, Q., Zheng, N., Tian, Z., & Bao, X. (2016). Catalysis with two-dimensional materials and their heterostructures. Nature nanotechnology, 11 (3), 218-230.
[124] Chu, S., & Majumdar, A. (2012). Opportunities and challenges for a sustainable energy future. nature, 488 (7411), 294-303.
[125] Herron, J. A., Kim, J., Upadhye, A. A., Huber, G. W., & Maravelias, C. T. (2015). A general framework for the assessment of solar fuel technologies. Energy & Environmental Science, 8 (1), 126-157.
[126] Li, L., Mu, X., Liu, W., Mi, Z. & Li, C. J. (2015). Simple and efficient system for combined solar energy harvesting and reversible hydrogen storage. Journal of the American Chemical Society, 137 (24), 7576-7579.
[127] Laurier, K. G., Vermoortele, F., Ameloot, R., De Vos, D. E., Hofkens, J., & Roeffaers, M. B. (2013). Iron (III)-based metal–organic frameworks as visible light photocatalysts. Journal of the American Chemical Society, 135 (39), 14488-14491. https://doi.org/10.1021/ja405086e.
[128] Khan, B., Raziq, F., Faheem, M. B., Farooq, M. U., Hussain, S., Ali, F.,... & Tian, H. (2020). Electronic and nanostructure engineering of bifunctional MoS2 towards exceptional visible-light photocatalytic CO2 reduction and pollutant degradation. Journal of hazardous materials, 381, 120972. https://doi.org/10.1016/j.jhazmat.2019.120972.
[129] Hoffmann, M. R., Martin, S. T., Choi, W., & Bahnemann, D. W. (1995). Environmental applications of semiconductor photocatalysis. Chemical reviews, 95 (1), 69-96. https://doi.org/10.1021/cr00033a004.
[130] Wang, Z., & Mi, B. (2017). Environmental applications of 2D molybdenum disulfide (MoS2) nanosheets. Environmental science & technology, 51 (15), 8229-8244. https://doi.org/10.1021/acs.est.7b01466.
[131] Xu, F., Zhu, B., Cheng, B., Yu, J., & Xu, J. (2018). 1D/2D TiO2/MoS2 hybrid nanostructures for enhanced photocatalytic CO2 reduction. Advanced Optical Materials, 6 (23), 1800911. https://doi.org/10.1002/adom.201800911.
[132] Zheng, Y., Yin, X., Jiang, Y., Bai, J., Tang, Y., Shen, Y., & Zhang, M. (2019). Nano Ag-Decorated MoS2 Nanosheets from 1T to 2H Phase Conversion for Photocatalytically Reducing CO2 to Methanol. Energy Technology, 7 (11), 1900582. https://doi.org/10.1002/ente.201900582.
[133] Biswas, M. R. U. D., Ali, A., Cho, K. Y., & Oh, W. C. (2018). Novel synthesis of WSe2-Graphene-TiO2 ternary nanocomposite via ultrasonic technics for high photocatalytic reduction of CO2 into CH3OH. Ultrasonics sonochemistry, 42, 738-746. https://doi.org/10.1016/j.ultsonch.2017.12.030.
[134] Fernandez-Ibanez, P., Byrne, J. A., López, M. I. P., Singh, A., McMichael, S., & Singhal, A. (2020). Photocatalytic inactivation of microorganisms in water. In Nanostructured Photocatalysts (pp. 229-248). Elsevier. https://doi.org/10.1016/B978-0-12-817836-2.00008-9.
[135] Yang, S., Shao, C., Zhou, X., Li, X., Tao, R., Li, X., & Liu, Y. (2020). MoSe2/TiO2 Nanofibers for Cycling Photocatalytic Removing Water Pollutants under UV–Vis–NIR Light. ACS Applied Nano Materials, 3 (3), 2278-2287. https://doi.org/10.1021/acsanm.9b02357.
[136] He, Z., Zhang, J., Li, X., Guan, S., Dai, M., & Wang, S. (2020). 1D/2D Heterostructured Photocatalysts: From Design and Unique Properties to Their Environmental Applications. Small, 16 (46), 2005051. https://doi.org/10.1002/smll.202005051.
[137] Xie, Z., Peng, Y. P., Yu, L., Xing, C., Qiu, M., Hu, J., & Zhang, H. (2020). Solar-Inspired Water Purification Based on Emerging 2D Materials: Status and Challenges. Solar RRL, 4 (3), 1900400. https://doi.org/10.1002/solr.201900400.
[138] Fu, S., Yuan, W., Liu, X., Yan, Y., Liu, H., Li, L. & Zhou, J. (2020). A novel 0D/2D WS2/BiOBr heterostructure with rich oxygen vacancies for enhanced broad-spectrum photocatalytic performance. Journal of colloid and interface science, 569, 150-163. https://doi.org/10.1016/j.jcis.2020.02.077.
[139] Vattikuti, S. P., Devarayapalli, K. C., Nagajyothi, P. C., & Shim, J. (2019). Binder-free WS2/ZrO2 hybrid as a photocatalyst for organic pollutant degradation under UV/simulated sunlight and tests for H2 evolution. Journal of Alloys and Compounds, 809, 151805. https://doi.org/10.1016/j.jallcom.2019.151805.
[140] Balasubramaniam, B., Singh, N., Kar, P., Tyagi, A., Prakash, J., & Gupta, R. K. (2019). Engineering of transition metal dichalcogenide-based 2D nanomaterials through doping for environmental applications. Molecular Systems Design & Engineering, 4 (4), 804-827. https://doi.org/10.1039/C8ME00116B.
[141] Li, X., & Peng, K. (2018). MoSe2/montmorillonite composite nanosheets: hydrothermal synthesis, structural characteristics, and enhanced photocatalytic activity. Minerals, 8 (7), 268. https://doi.org/10.3390/min8070268.
[142] Wang, M., Peng, Z., Qian, J., Li, H., Zhao, Z., & Fu, X. (2018). Highly efficient solar-driven photocatalytic degradation on environmental pollutants over a novel C fibers@ MoSe2 nanoplates core-shell composite. Journal of hazardous materials, 347, 403-411. https://doi.org/10.1016/j.jhazmat.2018.01.013.
[143] Zhang, S., Chen, L., Shen, J., Li, Z., Wu, Z., Feng, W. & Zhang, S. (2019). TiO2@ MoSe2 line-to-face heterostructure: An advanced photocatalyst for highly efficient reduction of Cr (VI). Ceramics International, 45 (14), 18065-18072. https://doi.org/10.1016/j.ceramint.2019.06.027.
[144] Zhang, Y., Yang, X., Wang, Y., Zhang, P., Liu, D., Li, Y. & Gui, J. (2020). Insight into L-cysteine-assisted growth of Cu2S nanoparticles on exfoliated MoS2 nanosheets for effective photoreduction removal of Cr (VI). Applied Surface Science, 146191. https://doi.org/10.1016/j.apsusc.2020.146191.
[145] Liu, T., Li, Y., Du, Q., Sun, J., Jiao, Y., Yang, G. & Wu, D. (2012). Adsorption of methylene blue from aqueous solution by graphene. Colloids and Surfaces B: Biointerfaces, 90, 197-203. https://doi.org/10.1016/j.colsurfb.2011.10.019.
[146] Wu, M. H., Li, L., Liu, N., Wang, D. J., Xue, Y. C., & Tang, L. (2018). Molybdenum disulfide (MoS2) as a co-catalyst for photocatalytic degradation of organic contaminants: A review. Process Safety and Environmental Protection, 118, 40-58. https://doi.org/10.1016/j.psep.2018.06.025.
[147] S. Adhikari, D.-H. Kim, Synthesis of Bi2S3/Bi2WO6 hierarchical microstructures for enhanced visible light driven photocatalytic degradation and photoelectrochemical sensing of ofloxacin, Chem. Eng. J., 2018, 354, 692-705 https://doi.org/10.1016/j.cej.2018.08.087.
[148] M. Chen, J. Yao, Y. Huang, H. Gong, W. Chu, Enhanced photocatalytic degradation of ciprofloxacin over Bi2O3/(BiO)2CO3 heterojunctions: Efficiency, kinetics, pathways, mechanisms and toxicity evaluation, Chem. Eng. J., 2018, 334, 453-461. https://doi.org/10.1016/j.cej.2017.10.064.
[149] M. Chen, W. Chu, Photocatalytic degradation and decomposition mechanism of fluoroquinolones norfloxacin over bismuth tungstate: Experiment and mathematic model, Appl. Catal. B: Environ., 2015, 168-169, 175-182. https://doi.org/10.1016/j.apcatb.2014.12.023.
[150] Li, L., Yan, Y., Liu, H., Du, J., Fu, S., Zhao, F.,... & Zhou, J. (2020). Hollow core/shell β-Bi2O3@WS2 p–n heterojunction for efficient photocatalytic degradation of fluoroquinolones: a theoretical and experimental study. Inorganic Chemistry Frontiers, 7 (6), 1374-1385. https://doi.org/10.1039/C9QI01594A.
[151] Senthil, R. A., Osman, S., Pan, J., Sun, Y., Kumar, T. R., & Manikandan, A. (2019). A facile hydrothermal synthesis of visible-light responsive BiFeWO6/MoS2 composite as superior photocatalyst for degradation of organic pollutants. Ceramics International, 45 (15), 18683-18690. https://doi.org/10.1016/j.ceramint.2019.06.093.
[152] Ashraf, W., Bansal, S., Singh, V., Barman, S., & Khanuja, M. (2020). BiOCl/WS2 hybrid nanosheet (2D/2D) heterojunctions for visible-light-driven photocatalytic degradation of organic/inorganic water pollutants. RSC Advances, 10 (42), 25073-25088. https://doi.org/10.1039/D0RA02916E.
[153] Fu, S., Liu, X., Yan, Y., Li, L., Liu, H., Zhao, F., & Zhou, J. (2019). Few-layer WS2 modified BiOBr nanosheets with enhanced broad-spectrum photocatalytic activity towards various pollutants removal. Science of The Total Environment, 694, 133756. https://doi.org/10.1016/j.scitotenv.2019.133756.
Cite This Article
  • APA Style

    Divya, Shivam Rai, Tina Chakrabarty, Arnab Kanti Giri. (2021). Layered 2D Transition Metal Dichalcogenides (MX2; M=Mo, W; X=S, Se, Te) Nanosheets and Their Composites for Photocatalytic Applications: A Review. Composite Materials, 5(1), 17-29. https://doi.org/10.11648/j.cm.20210501.12

    Copy | Download

    ACS Style

    Divya; Shivam Rai; Tina Chakrabarty; Arnab Kanti Giri. Layered 2D Transition Metal Dichalcogenides (MX2; M=Mo, W; X=S, Se, Te) Nanosheets and Their Composites for Photocatalytic Applications: A Review. Compos. Mater. 2021, 5(1), 17-29. doi: 10.11648/j.cm.20210501.12

    Copy | Download

    AMA Style

    Divya, Shivam Rai, Tina Chakrabarty, Arnab Kanti Giri. Layered 2D Transition Metal Dichalcogenides (MX2; M=Mo, W; X=S, Se, Te) Nanosheets and Their Composites for Photocatalytic Applications: A Review. Compos Mater. 2021;5(1):17-29. doi: 10.11648/j.cm.20210501.12

    Copy | Download

  • @article{10.11648/j.cm.20210501.12,
      author = {Divya and Shivam Rai and Tina Chakrabarty and Arnab Kanti Giri},
      title = {Layered 2D Transition Metal Dichalcogenides (MX2; M=Mo, W; X=S, Se, Te) Nanosheets and Their Composites for Photocatalytic Applications: A Review},
      journal = {Composite Materials},
      volume = {5},
      number = {1},
      pages = {17-29},
      doi = {10.11648/j.cm.20210501.12},
      url = {https://doi.org/10.11648/j.cm.20210501.12},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.cm.20210501.12},
      abstract = {Current, in-depth research on layered two-dimensional transition metal dichalcogenides (2D-TMDCs) has been triggered by a progression of investigative theoretical predictions and experimental observations of unanticipated electronic, optical and photochemical properties in nanosheets and their composites of this family of materials, especially their most archetypal member, MoS2. MoS2 nanosheets show a fantastic array of properties to be a potential candidate as an active photochemical agent, thus contributing to the gateway of an immense number of problems. However, from the past 2-3 years, the other family members, MoX2 (X=Se, Te) and WX2 (X=S, Se, and Te), are stepping out of the shadows of the famous molybdenum disulfide and establishing their own identity. This review aims to arrange and combine information on photocatalytic hydrogen production, water splitting, dye degradation, visible light photocatalytic activity, photocatalytic CO2 reduction, and environmental remediation of layered 2D-TMDCs nanosheets and their composites. Due to the popularity of MoS2, the central focus of the review is on MoSe2, MoTe2, WS2, WSe2. This work presents a systematic report on the applications of various 2D metal dichalcogenides as a whole, exploring their prime role in enhancing individual performance like the evolution of hydrogen gas, reduction of CO2, and degradation of toxic dyes or pollutants. All such treatments are of utmost significance for having a better environment to live. Thus, this specifies the importance of 2D-TMDCs towards the attainment of a sustainable homeland. In recent years WTe2 has emerged as a potential candidate for giant magnetoresistance and superconductivity. However, in the case of photocatalytic applications, it is not very economical for commercial development. Therefore, WTe2 is excluded from our discussion.},
     year = {2021}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Layered 2D Transition Metal Dichalcogenides (MX2; M=Mo, W; X=S, Se, Te) Nanosheets and Their Composites for Photocatalytic Applications: A Review
    AU  - Divya
    AU  - Shivam Rai
    AU  - Tina Chakrabarty
    AU  - Arnab Kanti Giri
    Y1  - 2021/07/13
    PY  - 2021
    N1  - https://doi.org/10.11648/j.cm.20210501.12
    DO  - 10.11648/j.cm.20210501.12
    T2  - Composite Materials
    JF  - Composite Materials
    JO  - Composite Materials
    SP  - 17
    EP  - 29
    PB  - Science Publishing Group
    SN  - 2994-7103
    UR  - https://doi.org/10.11648/j.cm.20210501.12
    AB  - Current, in-depth research on layered two-dimensional transition metal dichalcogenides (2D-TMDCs) has been triggered by a progression of investigative theoretical predictions and experimental observations of unanticipated electronic, optical and photochemical properties in nanosheets and their composites of this family of materials, especially their most archetypal member, MoS2. MoS2 nanosheets show a fantastic array of properties to be a potential candidate as an active photochemical agent, thus contributing to the gateway of an immense number of problems. However, from the past 2-3 years, the other family members, MoX2 (X=Se, Te) and WX2 (X=S, Se, and Te), are stepping out of the shadows of the famous molybdenum disulfide and establishing their own identity. This review aims to arrange and combine information on photocatalytic hydrogen production, water splitting, dye degradation, visible light photocatalytic activity, photocatalytic CO2 reduction, and environmental remediation of layered 2D-TMDCs nanosheets and their composites. Due to the popularity of MoS2, the central focus of the review is on MoSe2, MoTe2, WS2, WSe2. This work presents a systematic report on the applications of various 2D metal dichalcogenides as a whole, exploring their prime role in enhancing individual performance like the evolution of hydrogen gas, reduction of CO2, and degradation of toxic dyes or pollutants. All such treatments are of utmost significance for having a better environment to live. Thus, this specifies the importance of 2D-TMDCs towards the attainment of a sustainable homeland. In recent years WTe2 has emerged as a potential candidate for giant magnetoresistance and superconductivity. However, in the case of photocatalytic applications, it is not very economical for commercial development. Therefore, WTe2 is excluded from our discussion.
    VL  - 5
    IS  - 1
    ER  - 

    Copy | Download

Author Information
  • Department of Chemistry, Aligarh Muslim University, Aligarh, India

  • Department of Applied Chemistry, Gautam Buddha University, Greater Noida, India

  • Research and Development, Tata Steel Ltd., Jamshedpur, India

  • Department of Chemistry, Karim City College, Jamshedpur, India

  • Sections